57 research outputs found

    Aldose Reductase Gene Polymorphisms and Diabetic Retinopathy Susceptibility

    Get PDF
    OBJECTIVE: Aldose reductase (ALR) is involved in diabetic microvascular damage via the polyol pathway. A recent meta-analysis found genetic variation in the ALR gene (AKR1B1) to be significantly associated with diabetic retinopathy (DR). We investigated the genetic association of AKR1B1 with DR. RESEARCH DESIGN AND METHODS: The study enrolled 909 individuals with diabetes. Participants were genotyped for an AKR1B1 (CA)n microsatellite and 14 tag single nucleotide polymorphisms, and ophthalmological assessment was performed. RESULTS: A total of 514 individuals were found to have DR. rs9640883 was significantly associated with DR (P = 0.0005). However, AKR1B1 variation was not independently associated with DR development after adjusting for relevant clinical parameters. rs9640883 was associated with duration of diabetes (P = 0.002). CONCLUSION: Many previous reports have failed to account for known risk factors for DR. The commonly reported association of AKR1B1 with DR may be due to an association of the gene with younger age at onset of diabetes.Sotoodeh Abhary, Kathryn P. Burdon, Kate J. Laurie, Stacey Thorpe, John Landers, Lucy Goold, Stewart Lake, Nikolai Petrovsky, and Jamie E. Crai

    Neuropeptides, Trophic Factors, and Other Substances Providing Morphofunctional and Metabolic Protection in Experimental Models of Diabetic Retinopathy

    Get PDF
    Vision is the most important sensory modality for many species, including humans. Damage to the retina results in vision loss or even blindness. One of the most serious complications of diabetes, a disease that has seen a worldwide increase in prevalence, is diabetic retinopathy. This condition stems from consequences of pathological metabolism and develops in 75% of patients with type 1 and 50% with type 2 diabetes. The development of novel protective drugs is essential. In this review we provide a description of the disease and conclude that type 1 diabetes and type 2 diabetes lead to the same retinopathy. We evaluate existing experimental models and recent developments in finding effective compounds against this disorder. In our opinion, the best models are the long-term streptozotocin-induced diabetes and Otsuka Long-Evans Tokushima Fatty and spontaneously diabetic Torii rats, while the most promising substances are topically administered somatostatin and pigment epithelium-derived factor analogs, antivasculogenic substances, and systemic antioxidants. Future drug development should focus on these
    • …
    corecore